Alkylphenols are byproducts of anthropogenic activities that widely contaminate waters, soils and air; among them, the most represented are 4-nonylphenol (4-NP) and 4-octylphenol (4-OP). These compounds tend to bioaccumulate in animal and plant tissues and also represent a risk to human health. Indeed, humans are constantly exposed to alkylphenols through ingestion of contaminated water and food, inhalation and dermal absorption. In the present work, we characterized the cytotoxic ability of 4-OP towards several human cell lines, representing the potential main targets in the human body, also comparing its effect with that of 4-NP and of a mixture of both 4-OP and 4-NP in a range of concentrations between 1 and 100 μM. Viability assays demonstrated that each cell type had a peculiar sensitivity to 4-OP and that, in some cases, a combination of the two alkylphenols displayed a higher cytotoxic activity with respect to the single compound. Then, we focused our attention on a liver cell line (HepG2) in which we observed that 4-OP increased cell death and also caused interference with protective physiological cell processes, such as the unfolded protein response, autophagy and the antioxidant response. Finally, our experimental data were compared and correlated with ADMET properties originating from an in silico analysis. Altogether, our findings highlight a possible contribution of this pollutant to deregulation of the normal homeostasis in human liver cells.
Keywords: 4-nonylphenol; 4-octylphenol; ADMET prediction; HepG2 cells; autophagy; cytotoxicity; oxidative stress; unfolded protein response.