Infections caused by nontuberculous mycobacteria (NTM) are rising globally throughout the world. The number of species isolated from clinical samples is steadily growing, which demands the implementation of a robust diagnostic method with wide specificity. This study was carried out in in 2022-2024 in three clinical antituberculosis centers in the biggest cities of Russia: Moscow, Saint Petersburg, and Novosibirsk. We developed the DNA hybridization assay 'Myco-biochip' that allows the identification of 79 mycobacterial species and analyzed 3119 samples from 2221 patients. Sixty-eight mycobacterial species were identified in clinics, including the three novel species phylogenetically related to M. duvalii, M. lentiflavum, and M. talmoniae. The identification of a close relative of M. talmoniae adds to the existence of separate clade between M. terrae, M. triviale complexes and other slow-growing Mycobacteria, which supports the thesis against the splitting of Mycobacteria into five separate genera. Adding to the list of potentially pathogenic species, we identified M. adipatum and M. terramassiliense, which were previously described as natural habitats. The diversity of acid-fast bacilli identified in TB-suspected persons was not limited to the Mycobacteria genus and also includes species from genera Nocardia, Gordonia, Corynebacterium, Tsukamurella, and Rhodococcus of the order Mycobacteriales. The revealed bacterial diversity in patients with suspected NTM-diseases requires the implementation of relevant species identification assays as the first step in the laboratory diagnostic pipeline.
Keywords: M. moscowiensis; M. petersburgensis; M. sibiricum; NTM; biochip; mycobacteria; nontuberculous mycobacteria; oligonucleotide array.