Monitoring potassium ion (K+) concentration is essential in veterinary medicine, particularly for preventing hypokalemia in dairy cows, which can severely impact their health and productivity. While traditional laboratory methods like atomic absorption spectrometry are accurate, they are also time-consuming and require complex sample preparation. Ion-selective electrodes (ISEs) provide an alternative that is faster and more suitable for field measurements, but their performance is often compromised under variable temperature conditions, leading to inaccuracies. To address this, we developed a novel screen-printed ion-selective electrode (SPE) with hydrophobic Ti3C2 Mxene and gold nanoparticles (AuNPs), integrated with a temperature sensor. This design improves stability and accuracy across fluctuating temperatures by preventing water layer formation and enhancing conductivity. The sensor was validated across temperatures from 5 °C to 45 °C, achieving a linear detection range of 10-⁵ to 10-1 M and a response time of approximately 15 s. It also demonstrated excellent repeatability, selectivity, and stability, making it a robust tool for K+ monitoring in complex environments. This advancement could lead to broader applications in other temperature-sensitive analytical fields.
Keywords: AuNPs; K+-selective electrode; Ti3C2 Mxene; hydrophobic; hypokalemia; temperature sensor.