Thyroid cancer is the most common endocrine malignancy in the United States, with an overall favorable prognosis. However, some patients experience poor outcomes due to the development of resistance to conventional therapies. Genetic alterations, including mutations in BRAF, Met, and p53, play critical roles in thyroid cancer progression, with the BRAF V600E mutation detected in over 60% of cases. This study investigates the tumor-suppressive role of Annexin A7 (ANXA7) in thyroid cancer, focusing on its potential impact on tumor behavior and therapeutic response. Our analysis, which included RNA sequencing and protein profiling, revealed reduced ANXA7 expression in thyroid cancer cells, particularly in those harboring the BRAF V600E mutation. Upon treatment with inhibitors targeting BRAF and MEK, ANXA7 expression increased, leading to reduced phosphorylation of ERK and activation of apoptotic pathways. Additionally, we identified the cyclin-dependent kinase inhibitor p21 as a key player in modulating resistance to BRAF inhibitors. Combination therapies aimed at concurrently increasing p21 and ANXA7 levels resulted in a marked enhancement of apoptosis. These findings suggest a previously uncharacterized regulatory network involving the ANXA7/p21/BRAF/MAPK/p53 axis, which may contribute to drug resistance in thyroid cancer. This study provides new insights into overcoming resistance to BRAF and MAPK inhibitors, with implications for treating thyroid cancer and potentially other BRAF-mutant tumors. Future efforts will focus on high-throughput screening approaches to explore ANXA7-targeted therapeutic strategies for thyroid cancer.
Keywords: ANXA7; BRAF E600V mutation; Nutlin-3A; chemoresistance; p21; p53 mutation.