In the past decade, 4D printing has received attention in the aerospace, automotive, robotics, and biomedical fields due to its lightweight structure and high productivity. Combining stimulus-responsive materials with 3D printing technology, which enables controllable changes in shape and mechanical properties, is a new technology for building smart bearing structures. A multilayer smart truss structural component with self-sensing function is designed, and an internal stress calibration strategy is established to better adapt to asymmetric loads. A material system consisting of continuous carbon fibers and polylactic acid was constructed, and an isosceles trapezoidal structure was chosen as the basic configuration of the smart component. The self-inductive properties are described by analyzing the relationship between the pressure applied to the specimen and the change in the specimen's own resistance. Load-carrying capacity is realized by electrically heating the continuous carbon fibers in the component. Thermal deformation calibrates internal stress and enhances the load-carrying ability of the component over 50%. The experimental results demonstrate that the truss structure designed in this paper has strong self-induction, self-driving ability, and asymmetric load adaptation ability at the same time. This verifies that the 4D-printed smart component can be used as a load-carrying element, which broadens the application scope of smart components.
Keywords: 4D printing; fused deposition modeling; intelligent component; self-sensing.