Forward and Backward Private Searchable Encryption for Cloud-Assisted Industrial IoT

Sensors (Basel). 2024 Nov 28;24(23):7597. doi: 10.3390/s24237597.

Abstract

In the cloud-assisted industrial Internet of Things (IIoT), since the cloud server is not always trusted, the leakage of data privacy becomes a critical problem. Dynamic symmetric searchable encryption (DSSE) allows for the secure retrieval of outsourced data stored on cloud servers while ensuring data privacy. Forward privacy and backward privacy are necessary security requirements for DSSE. However, most existing schemes either trade the server's large storage overhead for forward privacy or trade efficiency/overhead for weak backward privacy. These schemes cannot fully meet the security requirements of cloud-assisted IIoT systems. We propose a fast and firmly secure SSE scheme called Veruna to address these limitations. To this end, we design a new state chain structure, which can not only ensure forward privacy with less storage overhead of the server but also achieve strong backward privacy with only a few cryptographic operations in the server. Security analysis proves that our scheme possesses forward privacy and Type-II backward privacy. Compared with many state-of-the-art schemes, our scheme has an advantage in search and update performance. The high efficiency and robust security make Veruna an ideal scheme for deployment in cloud-assisted IIoT systems.

Keywords: cloud-assisted IIoT; forward and backward privacy; state chain structure; symmetric searchable encryption.