Introduction: Roller skating shares biomechanical similarities with other sports, but specific studies on speed skaters are limited. Injuries, particularly to the groin, are frequent and related to acute and chronic muscle stress. Technology, particularly surface electromyography, can now be used to monitor performance and prevent injuries, especially those caused by muscular asymmetries. Such studies can be used to enhance training and for educational purposes. Materials and Methods: This pilot study was conducted on three subjects: two cadet-athletes and a novice, compared with the performance model of an elite athlete. Surface electromyography and kinematic analysis monitored the lower limb muscles during the propulsion and recovery phases of skating. Electrodes were placed on specific muscles, and triaxial accelerometers were used to detect kinematic differences and asymmetries. The results: Cadet 1 was closest to the elite athlete's performance model compared to Cadet 2, especially in kinematics and muscle efficiency. However, both cadets showed electromyographic differences compared to the elite athlete, with uneven muscle co-activations. The novice exhibited more oscillations and earlier propulsion compared to the elite athlete. Discussion: Using electromyography and kinematic analysis made it possible to identify differences between elite athletes, cadets, and novices. These observations provide useful data for developing personalized training and educational plans and preventing injuries related to muscle overload.
Keywords: educational; roller speed skate; surface electromyography.