BD-freshwater-fish: An image dataset from Bangladesh for AI-powered automatic fish species classification and detection toward smart aquaculture

Data Brief. 2024 Nov 14:57:111132. doi: 10.1016/j.dib.2024.111132. eCollection 2024 Dec.

Abstract

There are about 33,000 different species of fish and they are visually identified using variety of traits, i.e., size and shape of body, head's size and shape, skin pattern, fin pattern, mouth pattern, scale pattern, and eye pattern etc. In traditional manner, identifying these fish species is always difficult with necked eye. Identification and detection of fish species from images using deep learning and computer vision based techniques is challenging topic among researchers worldwide as an interesting problem. Automatic fish species classification and detection has practical importance for both smart aquaculture and fish industry. AI powered deep learning and computer vision based automatic fish species recognition and sorting system becoming significant factor for making aquaculture industry more productive and sustainable. However, the performance of machine learning classifier greatly depends on the size of image dataset and the quality of the images in the dataset. This article demonstrate BD-Freshwater-Fish, an image dataset contain 4389 images of 12 different species captured in natural environment using HD mobile camera from local fish market of Sylhet and Jessore district of Bangladesh. Twelve (12) different data classes are: Rohu (Labeo rohita), Catla (Catla catla), Mrigal (Cirrhinus cirrhosus), Grass Carp (Ctenopharyngodon idella), Common Carp (Cyprinus carpio), Mirror Carp (Cyprinus carpio var. specularis), Black Rohu (Labeo calbasu), Silver Carp (Hypophthalmichthys molitrix), Striped Catfish (Pangasius pangasius), Nile Tilapia (Oreochromis niloticus), Long-whiskered Catfish (Sperata aor), Freshwater Shark (Wallago attu) has been included in the dataset with a different number of images of different species. The BD-Freshwater-Fish dataset is hosted by Department of Computer Science and Engineering mutually with the help of the Department of Aquaculture, Sylhet Agricultural University, Sylhet, Bangladesh.

Keywords: Computer vision; Deep learning; Fish species classification; Fish species dataset; Fish species detection; Machine learning; Smart aquaculture.