Deep learning algorithm enables automated Cobb angle measurements with high accuracy

Skeletal Radiol. 2024 Dec 17. doi: 10.1007/s00256-024-04853-7. Online ahead of print.

Abstract

Objective: To determine the accuracy of automatic Cobb angle measurements by deep learning (DL) on full spine radiographs.

Materials and methods: Full spine radiographs of patients aged > 2 years were screened using the radiology reports to identify radiographs for performing Cobb angle measurements. Two senior musculoskeletal radiologists and one senior orthopedic surgeon independently annotated Cobb angles exceeding 7° indicating the angle location as either proximal thoracic (apices between T3 and T5), main thoracic (apices between T6 and T11), or thoraco-lumbar (apices between T12 and L4). If at least two readers agreed on the number of angles, location of the angles, and difference between comparable angles was < 8°, then the ground truth was defined as the mean of their measurements. Otherwise, the radiographs were reviewed by the three annotators in consensus. The DL software (BoneMetrics, Gleamer) was evaluated against the manual annotation in terms of mean absolute error (MAE).

Results: A total of 345 patients were included in the study (age 33 ± 24 years, 221 women): 179 pediatric patients (< 22 years old) and 166 adult patients (22 to 85 years old). Fifty-three cases were reviewed in consensus. The MAE of the DL algorithm for the main curvature was 2.6° (95% CI [2.0; 3.3]). For the subgroup of pediatric patients, the MAE was 1.9° (95% CI [1.6; 2.2]) versus 3.3° (95% CI [2.2; 4.8]) for adults.

Conclusion: The DL algorithm predicted the Cobb angle of scoliotic patients with high accuracy.

Keywords: Cobb angle; Deep learning; Radiograph; Scoliosis.