Although Mg-Li dual metal-ion batteries are proposed as a superior system that unite safety of Mg-batteries and performance of Li-ion based systems, its practical implantation is limited due to the lack of reliable high performance cathodes. Herein, we report a high-performance Mg-Li dual metal-ion battery system based on highly pseudocapacitive hierarchical TiO2-B nanosheet assembled spheres (NS) cathode. This 2D cathode displayed exceptional pseudocapacitance (a maximum of 93%) specific capacity (303 mAh/g at 25 mA/g), rate performance (210 mAh/g at 1A/g), consistent cycling (retain ~100% capacity for 3000 cycles at 1A/g), coulombic efficiency (nearly 100%) and fast-charging (~12.1 min). These properties are remarkably dominant to the existing Mg-Li dual metal-ion battery cathodes. Spectroscopic and microscopic mechanistic studies confirmed negligible structural changes during charge-discharge cycles of the TiO2-B nanosheet assembled spheres electrodes. Exceptional electrochemical properties of the 2D electrode is ascribed to remarkable pseudocapacitive Mg-Li dual metal-ion diffusion via the numerous nanointerfaces of TiO2-B caused by its hierarchical microstrucrure. Large surface area, nanosheet morphology, mesoporous structure and ultrathin nature also acted as secondary factors facilitating improved electrode-electrolyte contact. Demonstrated approach of pseudocapacitive type Mg-Li dual metal-ion intercalation through hierarchical nanointerfaces may be further utilized for the designing of numerous top-notch electrode materials for futuristic Mg-Li dual metal-ion batteries
.
Keywords: Mg-Li hybrid; TiO2 bronze; insitu XRD; nanosheets; pseudocapacitance.
© 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.