The heat and corrosion resistance of traditional membranes is inadequate, thus making them inadequate for the separation/filtration needs of harsh environments. Polyphenylene sulfide(PPS) can be used to develop new-generation membrane materials, but PPS has problems such as hydrophobicity and UV resistance. This article proposes a PPS membrane for efficient separation/filtration under extreme conditions, which uses melt-blown PPS non-woven fabric and undergoes oxidation and nitrification modification. Combining the advantages of metal-organic framework material (ZIF-67), a hollow ZIF-67/PPS non-woven fabric membrane has been successfully prepared, solving PPS's hydrophobic and UV-resistant problems. It is ideal for wastewater treatment and air filtration in harsh environments yet retains hydrophilicity even in intense alkaline and high-temperature conditions. The hollow ZIF-67/PPS membrane exhibits a very high pure water flux (34,261 L m-2 h-1). Surprisingly, the ZIF-67/PPS membrane exhibits strong chemical/thermal performance, maintaining good separation/filtration performance even after multiple cyclic tests in extreme conditions. The ZIF-67/PPS membrane with large-scale production capacity has reasonable prospects of dealing with environmental problems under extreme conditions.
Keywords: Air filtration; Extreme condition; Metal-organic framework; Polyphenylene sulfide; Wastewater treatment.
Copyright © 2024 Elsevier Ltd. All rights reserved.