The Exoproteome and Surfaceome of Toxigenic Corynebacterium diphtheriae 1737 and Its Response to Iron Restriction and Growth on Human Hemoglobin

J Proteome Res. 2024 Dec 18. doi: 10.1021/acs.jproteome.4c00443. Online ahead of print.

Abstract

Toxin-producing Corynebacterium diphtheriae strains are the etiological agents of the severe upper respiratory disease, diphtheria. A global phylogenetic analysis revealed that biotype gravis is particularly lethal as it produces diphtheria toxin and a range of other virulence factors, particularly when it encounters low levels of iron at sites of infection. To gain insight into how it colonizes its host, we have identified iron-dependent changes in the exoproteome and surfaceome of C. diphtheriae strain 1737 using a combination of whole-cell fractionation, intact cell surface proteolysis, and quantitative proteomics. In total, we identified 1414 of the predicted 2265 proteins (62%) encoded by its reference genome. For each protein, we quantified its degree of secretion and surface exposure, revealing that exoproteases and hydrolases predominate in the exoproteome, while the surfaceome is enriched with adhesins, particularly DIP2093. Our analysis provides insight into how components in the heme-acquisition system are positioned, showing pronounced surface exposure of the strain-specific ChtA/ChtC paralogues and high secretion of the species-conserved heme-binding HtaA protein, suggesting it functions as a hemophore. Profiling the response of the exoproteome and surfaceome after microbial exposure to human hemoglobin and iron limitation reveals potential virulence factors that may be expressed at sites of infection. Data are available via ProteomeXchange with identifier PXD051674.

Keywords: Corynebacterium diphtheriae; cell envelope; cell surface; differential expression; diphtheria; exoproteome; label-free quantification; proteomic profiling; proteomics; surfaceome; virulence factors.