Cyclins are a group of proteins that regulate the cell cycle process by modulating various stages of cell division to ensure correct cell proliferation, differentiation, and apoptosis. Research on cyclins is crucial for understanding the biological functions and pathological states of cells. However, current research on cyclin identification based on machine learning only focuses on accuracy ignoring the interpretability of features. Therefore, in this study, we pay more attention to the interpretation and analysis of key features associated with cyclins. Firstly, we developed an SVM-based model for identifying cyclins with an accuracy of 92.8% through 5-fold. Then we analyzed the physicochemical properties of the 14 key features used in the model construction and identified the G and charged C1 features that are critical for distinguishing cyclins from non-cyclins. Furthermore, we constructed an SVM-based model using only these two features with an accuracy of 81.3% through the leave-one-out cross-validation. Our study shows that cyclins differ from non-cyclins in their physicochemical properties and that using only two features can achieve good prediction accuracy.
Keywords: Cyclins; Feature extraction; Feature selection; Machine learning; Model construction; Predict.
Copyright © 2024 Elsevier Inc. All rights reserved.