Type 1 Diabetes is an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells, leading to hyperglycemia and various complications. Despite insulin replacement therapy, there is a need for therapies targeting the underlying autoimmune response. This review aims to explore the mechanistic insights into T1D pathogenesis and the impact of delivery systems on immunotherapy. Genetic predisposition and environmental factors contribute to T1D development, triggering an immune-mediated attack on β-cells. T cells, particularly CD4+ and CD8+ T cells, play a central role in β-cell destruction. Antigen- specific immunotherapy is a unique way to modify the immune system by targeting specific antigens (substances that trigger the immune system) for immunotherapy. It aims to restore immune tolerance by targeting autoantigens associated with T1D. Nanoparticle-based delivery systems offer precise antigen delivery, promoting immune tolerance induction. Various studies have demonstrated the efficacy of nanoparticle-mediated delivery of autoantigens and immunomodulatory agents in preclinical models, and several patents have been made in T1D. Combining antigen-specific immunotherapy with β-cell regeneration strategies presents a promising approach for T1D treatment. However, challenges remain in optimizing delivery systems for targeted immune modulation while ensuring safety and efficacy.
Keywords: Immunological tolerance; antigen-specific immunotherapy.; autoantigens; autoimmune response; pancreatic β cells; type-1 diabetes.
Copyright© Bentham Science Publishers; For any queries, please email at [email protected].