Background: Medical record abstraction (MRA) is a commonly used method for data collection in clinical research, but is prone to error, and the influence of quality control (QC) measures is seldom and inconsistently assessed during the course of a study. We employed a novel, standardized MRA-QC framework as part of an ongoing observational study in an effort to control MRA error rates. In order to assess the effectiveness of our framework, we compared our error rates against traditional MRA studies that had not reported using formalized MRA-QC methods. Thus, the objective of this study was to compare the MRA error rates derived from the literature with the error rates found in a study using MRA as the sole method of data collection that employed an MRA-QC framework.
Methods: A comparison of the error rates derived from MRA-centric studies identified as part of a systematic literature review was conducted against those derived from an MRA-centric study that employed an MRA-QC framework to evaluate the effectiveness of the MRA-QC framework. An inverse variance-weighted meta-analytical method with Freeman-Tukey transformation was used to compute pooled effect size for both the MRA studies identified in the literature and the study that implemented the MRA-QC framework. The level of heterogeneity was assessed using the Q-statistic and Higgins and Thompson's I2 statistic.
Results: The overall error rate from the MRA literature was 6.57%. Error rates for the study using our MRA-QC framework were between 1.04% (optimistic, all-field rate) and 2.57% (conservative, populated-field rate), 4.00-5.53% points less than the observed rate from the literature (p < 0.0001).
Conclusions: Review of the literature indicated that the accuracy associated with MRA varied widely across studies. However, our results demonstrate that, with appropriate training and continuous QC, MRA error rates can be significantly controlled during the course of a clinical research study.
Keywords: Clinical data management; Clinical research; Data collection; Data quality; Medical record abstraction.
© 2024. The Author(s).