Background: The calcium-sensitive receptor (CaSR) has been identified as a key factor in the formation of kidney stones. A substantial body of research has illuminated the function of CaSR in stone formation with respect to oxidative stress, epithelial injury, crystal adhesion, and stone-associated proteins. Nevertheless, as a pivotal molecule in renal calcium excretion, its pathway that contributes to stone formation by regulating calcium supersaturation remains underexplored.
Methods: An in vitro rat calcium oxalate kidney stone model was established through the co-cultivation of calcium oxalate monohydrate (COM) with NRK-52E cells, while an in vivo model was constructed using the ethylene glycol method. Subsequently, the level of the CaSR-claudin-14 pathway was determined. To further elucidate the molecular pathway of CaSR-mediated regulation of claudin-14, drugs were selectively added to the in vitro and ex vivo kidney stone models, and the expression of claudin-14 and the levels of stone formation were detected. Moreover, the direct regulation of claudin-14 by CaSR with STAT3 serving as a transcription factor was examined via the dual luciferase assay. Eventually, a Cldn-14 knockout rat model and a model of kidney stone induction by ethylene glycol were generated using CRISPR-Cas9 technology to further clarify the role of claudin-14 in the CaSR-regulated formation of kidney stones.
Results: In vitro and in vivo observations revealed that calcium oxalate induces high expression of CaSR-claudin-14. Specifically, CaSR regulates claudin-14 expression through phosphorylation modification of STAT3 via protein kinase A (PKA). In vitro, the intervention of PKA and STAT3 reversed the elevated claudin-14 levels and stone formation induced by CaSR. Finally, we generated cldn-14 knockout rats using CRISPR-Cas9 technology and observed that ethylene glycol still induced stone formation in these animals. Nevertheless, the specific activation or inhibition of CaSR demonstrated no notable impact on stone formation.
Conclusion: The results of our study indicate that calcium oxalate crystals induce the activation of the pro-stone pathway of CaSR. That is, activated CaSR regulates claudin-14 levels via the PKA-STAT3 pathway, which further promotes calcium salt stone formation. The role of CaSR in the regulation of stone homeostasis is further enriched.
Keywords: calcium oxalate; calcium-sensitive receptor; claudin-14; kidney stones; signal transducer and activator of transcription 3.
Copyright © 2024 Luo, Chen, Zheng, Zou, Zou, Li, Chen, Cheng and Qian.