Hitting the target: cell signaling pathways modulation by extracellular vesicles

Extracell Vesicles Circ Nucl Acids. 2024 Sep 24;5(3):527-552. doi: 10.20517/evcna.2024.16. eCollection 2024.

Abstract

Extracellular vesicles (EVs) are lipid bilayer-enclosed nanoparticles released outside the cell. EVs have drawn attention not only for their role in cell waste disposal, but also as additional tools for cell-to-cell communication. Their complex contents include not only lipids, but also proteins, nucleic acids (RNA, DNA), and metabolites. A large part of these molecules are involved in mediating or influencing signal transduction in target cells. In multicellular organisms, EVs have been suggested to modulate signals in cells localized either in the neighboring tissue or in distant regions of the body by interacting with the cell surface or by entering the cells via endocytosis or membrane fusion. Most of the EV-modulated cell signaling pathways have drawn considerable attention because they affect morphogenetic signaling pathways, as well as pathways activated by cytokines and growth factors. Therefore, they are implicated in relevant biological processes, such as embryonic development, cancer initiation and spreading, tissue differentiation and repair, and immune response. Furthermore, it has recently emerged that multicellular organisms interact with and receive signals through EVs released by their microbiota as well as by edible plants. This review reports studies investigating EV-mediated signaling in target mammalian cells, with a focus on key pathways for organism development, organ homeostasis, cell differentiation and immune response.

Keywords: EGFR; Extracellular vesicles; Hedgehog; Hippo; Notch; TGF-β; Wnt; exosomes; microvesicles.

Publication types

  • Review