Gas-phase organic acids are ubiquitous in the atmosphere with mixing ratios of several species, such as formic acid and acetic acid, often as high as several parts per billion by volume (ppbv). Organic acids are produced via photochemical reactions and are also directly emitted from various sources, including combustion, microbial activity, vegetation, soils, and ruminants. We present measurements of gas-phase formic, acetic, propionic, pyruvic, and pentanoic acids from a site near Boise, Idaho, in August 2019 made by iodide-adduct chemical ionization mass spectrometry (CIMS). The site is adjacent to a major interstate highway and beyond the urban/suburban core is surrounded by national forests to the north and northeast and by farmland to the west and south. Maximum mixing ratios of formic, acetic, propionic, and pentanoic acid were typically near 10, 3, 0.4, and 0.2 ppbv, respectively. Observed daytime concentrations of these acids were mostly consistent with other studies, but concentrations were persistently the highest at night between 20:00 to 8:00 (local standard time). Such elevated nighttime concentrations are unlike most other reported organic acid measurements. Although there were times when organic acid concentrations were enhanced by mobile source emissions, the organic acid concentrations appear to be mainly controlled by noncombustion surface primary emissions. Source apportionment by positive matrix factorization (PMF) supports the importance of significant noncombustion, nonphotochemical emissions. Two agricultural surface sources were identified and estimated to contribute to greater than half of total observed concentrations of formic and acetic acid. In contrast to the other measured organic acids, but in agreement with all other reported measurements in the literature, pyruvic acid concentrations peaked during the daytime and were largely controlled by photochemistry.
© 2024 The Authors. Published by American Chemical Society.