Glaciochemistry and environmental interpretation of a snow core from West Antarctica

An Acad Bras Cienc. 2024 Dec 16;96(suppl 2):e20240243. doi: 10.1590/0001-3765202420240243. eCollection 2024.

Abstract

This study investigated the chemical content of a shallow snow core (4.95 m) named TT 6, collected during a Brazilian traverse of the West Antarctic Ice Sheet in the 2014/2015 Austral summer. Stable isotope ratios (δD and δ18O) and ionic content, determined at the Centro Polar e Climático of the Federal University of Rio Grande do Sul (CPC/UFRGS), were used to date the core and reconstruct the climatic conditions at the site. The core represents approximately 11 years ± 6 months of precipitation, i.e., a mean net snow accumulation rate of 0.19 ± 0.02 m a-1 in water equivalent. Using the non-sea-salt sulfate values, we identified the 2011 Puyhue-Cordón (Chile) volcanic eruption signal, providing a reference horizon for dating. Anions represent 53.73% of the ionic content. We identified that 96.86% of calcium and 84.50% of sulfate are non-sea origin, while the acidic contribution is 25.62% H+. We observed high peaks in marine aerosols containing Na+, Cl-, and Mg2+ during winter, and results from the ERA5 global model (NOAA) indicated that El Niño events could influence Antarctic temperatures, facilitating the transport of marine aerosols to the continent.

MeSH terms

  • Antarctic Regions
  • Brazil
  • Environmental Monitoring / methods
  • Ice Cover* / chemistry
  • Seasons*
  • Snow* / chemistry