Purpose: Computer-based medical training scenarios, derived from patient's records, often lack variability, modifiability, and availability. Furthermore, generating image datasets and creating scenarios is resource-intensive. Therefore, patient authoring tools for rapid dataset-independent creation of virtual patients (VPs) is a pressing need.
Methods: An authoring tool and a virtual catheterization laboratory environment were developed. The tool allows customised VP generation through a real-time morphable heart model and Euroscore parameters. The generated VP can be examined inside the vCathLab using a fluoroscopy and monitoring device, both on desktop and immersive virtual reality. Seven board-certified experts evaluated the proposed method from three aspects, i.e. System Usability Scale, qualitative feedback, and its performance in VR.
Results: All participants agreed that this method could provide the necessary information and is anatomically correct within an educational context. Its modifiability, variability, and simplicity were well recognised. The prototype achieved excellent usability score and considerable performance results.
Conclusion: We present a highly variable VP authoring tool that enhances variability in medical training scenarios. Although this work does not aim to explore didactic aspects, the potential of using this approach in an educational context has been confirmed in our study. Accordingly, these aspects can benefit from a thorough investigation in the future. In addition, our tool can be improved to provide more realistic parameter ranges for procedure-specific cases.
Keywords: Medical training; Per-vertex animation; Structural heart disease; Virtual reality.
© 2024. The Author(s).