Stimulus-invariant aspects of the retinal code drive discriminability of natural scenes

Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2313676121. doi: 10.1073/pnas.2313676121. Epub 2024 Dec 19.

Abstract

Everything that the brain sees must first be encoded by the retina, which maintains a reliable representation of the visual world in many different, complex natural scenes while also adapting to stimulus changes. This study quantifies whether and how the brain selectively encodes stimulus features about scene identity in complex naturalistic environments. While a wealth of previous work has dug into the static and dynamic features of the population code in retinal ganglion cells (RGCs), less is known about how populations form both flexible and reliable encoding in natural moving scenes. We record from the larval salamander retina responding to five different natural movies, over many repeats, and use these data to characterize the population code in terms of single-cell fluctuations in rate and pairwise couplings between cells. Decomposing the population code into independent and cell-cell interactions reveals how broad scene structure is encoded in the retinal output. while the single-cell activity adapts to different stimuli, the population structure captured in the sparse, strong couplings is consistent across natural movies as well as synthetic stimuli. We show that these interactions contribute to encoding scene identity. We also demonstrate that this structure likely arises in part from shared bipolar cell input as well as from gap junctions between RGCs and amacrine cells.

Keywords: natural scenes; neural coding; neural computation; population code; retina.

MeSH terms

  • Animals
  • Larva / physiology
  • Photic Stimulation*
  • Retina* / physiology
  • Retinal Bipolar Cells / physiology
  • Retinal Ganglion Cells* / physiology
  • Urodela / physiology