Age prediction based on single cell RNA-Sequencing data (scRNA-Seq) can provide information for patients' susceptibility to various diseases and conditions. In addition, such analysis can be used to identify aging related genes and pathways. To enable age prediction based on scRNA-Seq data, we developed PolyEN, a new regression model which learns continuous representation for expression over time. These representations are then used by PolyEN to integrate genes to predict an age. Existing and new lung aging data we profiled demonstrated PolyEN's improved performance over existing methods for age prediction. Our results identified lung epithelial cells as the most significant predictors for non-smokers while lung endothelial cells led to the best chronological age prediction results for smokers.
Copyright: © 2024 Song et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.