Background: We sought to evaluate key performance indicators related to an internally developed and deployed artificial intelligence (AI)-augmented kidney stone composition test system for potential improvements in test quality, efficiency, cost-effectiveness, and staff satisfaction.
Methods: We compared quality, efficiency, staff satisfaction, and financial data from the 6 months after the AI-augmented laboratory test system was deployed (test period) with data from the same 6-month period in the previous year (control period) to determine if AI-augmentation improved key performance indicators of this laboratory test.
Results: In the 6 months following the deployment (test period) of the AI-augmented kidney stone composition test system, 44 830 kidney stones were analyzed. Of these, 92% of kidney stones were eligible for AI-assisted interpretation. Out of these AI-eligible stones, 45% were able to be auto-released by the AI-augmented test system without human secondary review. Furthermore, the new AI-augmented kidney stone test system resulted in an apparent 40% reduction in incorrect laboratory results. Additionally, the new AI-augmented test system improved laboratory efficiency by 20%, improved staff satisfaction, and reduced the average analysis cost per kidney stone by $0.23.
Conclusions: The AI-augmented test system improved test quality, efficiency, cost-effectiveness and staff satisfaction related to this kidney stone composition test.
© Association for Diagnostics & Laboratory Medicine 2024. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].