Medical image analysis has significantly benefited from advancements in deep learning, particularly in the application of Generative Adversarial Networks (GANs) for generating realistic and diverse images that can augment training datasets. The common GAN-based approach is to generate entire image volumes, rather than the region of interest (ROI). Research on deep learning-based brain tumor classification using MRI has shown that it is easier to classify the tumor ROIs compared to the entire image volumes. In this work, we present a novel framework that uses vector-quantization GAN and a transformer incorporating masked token modeling to generate high-resolution and diverse 3D brain tumor ROIs that can be used as additional data for tumor ROI classification. We apply our method to two imbalanced datasets where we augment the minority class: (1) low-grade glioma (LGG) ROIs from the Multimodal Brain Tumor Segmentation Challenge (BraTS) 2019 dataset; (2) BRAF V600E Mutation genetic marker tumor ROIs from the internal pediatric LGG (pLGG) dataset. We show that the proposed method outperforms various baseline models qualitatively and quantitatively. The generated data was used to balance the data to classify brain tumor types. Our approach demonstrates superior performance, surpassing baseline models by 6.4% in the area under the ROC curve (AUC) on the BraTS 2019 dataset and 4.3% in the AUC on the internal pLGG dataset. The results indicate the generated tumor ROIs can effectively address the imbalanced data problem. Our proposed method has the potential to facilitate an accurate diagnosis of rare brain tumors using MRI scans.
Keywords: Brain MRI; Deep learning; Generative Adversarial Networks; Image generation; Pediatric low grade glioma; Transformer.
Copyright © 2024. Published by Elsevier Ltd.