Poly(ethylene terephthalate) (PET) is one of the most ubiquitous plastics and can be depolymerized through biological and chemo-catalytic routes to its constituent monomers, terephthalic acid (TPA) and ethylene glycol (EG). TPA and EG can be re-synthesized into PET for closed-loop recycling or microbially converted into higher-value products for open-loop recycling. Here, we expand on our previous efforts engineering and applying Pseudomonas putida KT2440 for PET conversion by employing adaptive laboratory evolution (ALE) to improve TPA catabolism. Three P. putida strains with varying degrees of metabolic engineering for EG catabolism underwent an automation-enabled ALE campaign on TPA, a TPA and EG mixture, and glucose as a control. ALE increased the growth rate on TPA and TPA-EG mixtures by 4.1- and 3.5-fold, respectively, in approximately 350 generations. Evolved isolates were collected at the midpoints and endpoints of 39 independent ALE experiments, and growth rates were increased by 0.15 and 0.20 h-1 on TPA and a TPA-EG, respectively, in the best performing isolates. Whole-genome re-sequencing identified multiple converged mutations, including loss-of-function mutations to global regulators gacS, gacA, and turA along with large duplication and intergenic deletion events that impacted the heterologously-expressed tphABII catabolic genes. Reverse engineering of these targets confirmed causality, and a strain with all three regulators deleted and second copies of tphABII and tpaK displayed improved TPA utilization compared to the base strain. Taken together, an iterative strain engineering process involving heterologous pathway engineering, ALE, whole genome sequencing, and genome editing identified five genetic interventions that improve P. putida growth on TPA, aimed at developing enhanced whole-cell biocatalysts for PET upcycling.
Keywords: plastics upcycling; poly(ethylene terephthalate); terephthalate.
Copyright © 2024. Published by Elsevier Inc.