[Influence of Tongfu Xiefei Guanchang Solution on intestinal barrier and intestinal flora of rats with acute lung injury based on p38 MAPK/MLCK signaling pathway]

Zhongguo Zhong Yao Za Zhi. 2024 Nov;49(21):5919-5931. doi: 10.19540/j.cnki.cjcmm.20240802.707.
[Article in Chinese]

Abstract

The study is designed to observe the mechanism of Tongfu Xiefei Guanchang Solution(TFXF) in the treatment of acute lung injury(ALI) in rats by improving intestinal barrier and intestinal flora structure via p38 mitogen-activated protein kinase(p38 MAPK)/myosin light chain kinase(MLCK) signaling pathway. Sixty SPF-grade Wistar rats were randomly divided into the control(CON) group, lipopolysaccharide(LPS) group(7.5 mg·kg~(-1)), LPS + dexamethasone(DEX) group(3.5 mg·kg~(-1)), LPS + high-dose(HD)-TFXF group(14.74 g·kg~(-1)), LPS + middle-dose(MD)-TFXF group(7.37 g·kg~(-1)), and LPS + low-dose(LD)-TFXF group(3.69 g·kg~(-1)). ALI model of the rat was established by intraperitoneal injection of LPS. The lactate dehydrogenase(LDH) activity and total protein concentration in the bronchoalveolar lavage fluid(BALF) were measured; tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) levels in lung and colon tissue of rats were detected by enzyme linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe the pathological expression in the lung and colon tissue of rats. The mRNA expression of p38 MAPK, TNF-α, and IL-1β in rat lung tissue was determined by real-time fluorescence quantitative polymerase chain reaction(real-time PCR). Western blot was used to detect the protein expression related to the p38 MAPK/MLCK signaling pathway in the colon tissue of rats. 16S rRNA sequencing was used to detect changes in the composition and content of intestinal flora in rats, and correlation analyses were performed to explore the regulatory role of intestinal flora in improving ALI in rats. The results showed that compared with those in the LPS group, the histopathological scores of lung and colon tissue, LDH activity, and total protein concentration in BALF were significantly reduced in rats in all groups after drug administration. Except for the LPS + LD-TFXF group, the remaining groups significantly reduced the levels of TNF-α and IL-1β in the lung and colon tissue of rats. The protein expressions of phosphorylated p38 mitogen-activated protein kinase(p-p38 MAPK)/p38, phosphorylated myosin light chain(p-MLC)/myosin light chain 2(MLC2), and MLCK in colon tissue of rats in each drug administration group were significantly decreased. The mRNA expression levels of p38 MAPK, TNF-α, and IL-1β were significantly reduced in the LPS + HD-TFXF group. 16S rRNA sequencing results showed that the abundance of intestinal flora was significantly higher in the LPS + HD-TFXF group, and intestinal floras including Sobs, Shannon, and Npshannon were significantly higher. The β-diversity distribution of intestinal flora tends toward the CON group, and the abundance of Firmicutes was significantly higher. The abundance of Proteobacteria was significantly reduced; the abundance of Bacteroides was significantly reduced, and the abundance of Ruminococcus was significantly higher. The main species differences were Blautia, Roseburia_sp_499, and Butyricicoccus. TNF-α and IL-1β of lung tissue were negatively correlated with Muribaculaceae, unclassified norank_f_Eubacterium_coprostanoligenes, and Ruminococcus and positively correlated with Bacteroides. Meanwhile, TNF-α and IL-1β of colon tissue were negatively correlated with unclassified norank_f_Eubacterium_coprostanoligenes and Ruminococcus and positively correlated with Bacteroides. The predicted biological function of the flora was related to the biosynthesis of secondary metabolites, amino acid biosynthesis, sugar metabolism, and oxidative phosphorylation. The above studies show that TFXF can repair lung and colon tissue structure and regulate inflammatory factor levels by modulating the abundance and diversity of intestinal flora species in ALI rats. Its mechanism of action in ameliorating ALI in rats may be related to the inhibition of inflammation, improvement of intestinal mucosal permeability, and maintenance of intestinal flora homeostasis and barrier through the p38 MAPK/MLCK signaling pathway.

Keywords: 16S rRNA sequencing; Tongfu Xiefei Guanchang Solution; acute lung injury; intestinal barrier; p38 MAPK/MLCK signaling pathway.

Publication types

  • English Abstract

MeSH terms

  • Acute Lung Injury* / drug therapy
  • Acute Lung Injury* / genetics
  • Acute Lung Injury* / metabolism
  • Animals
  • Drugs, Chinese Herbal* / administration & dosage
  • Drugs, Chinese Herbal* / pharmacology
  • Gastrointestinal Microbiome* / drug effects
  • Humans
  • Interleukin-1beta / genetics
  • Interleukin-1beta / metabolism
  • Intestinal Mucosa / drug effects
  • Intestinal Mucosa / metabolism
  • Lung / drug effects
  • Lung / metabolism
  • Male
  • Myosin-Light-Chain Kinase* / genetics
  • Myosin-Light-Chain Kinase* / metabolism
  • Rats
  • Rats, Wistar*
  • Signal Transduction* / drug effects
  • Tumor Necrosis Factor-alpha / genetics
  • Tumor Necrosis Factor-alpha / metabolism
  • p38 Mitogen-Activated Protein Kinases* / genetics
  • p38 Mitogen-Activated Protein Kinases* / metabolism

Substances

  • p38 Mitogen-Activated Protein Kinases
  • Drugs, Chinese Herbal
  • Myosin-Light-Chain Kinase
  • Interleukin-1beta
  • Tumor Necrosis Factor-alpha