Aging is a ubiquitous biological phenomenon, characterized by a gradual decline in physiological functions and an increased risk of various diseases. Although it is known that aging involves extensive changes in gene expression and disruptions in cellular metabolism, the molecular mechanisms underlying these processes remain incompletely understood. The CRISPR/Cas9 technology provides an efficient method for gene editing. In recent years, this technique has been successfully applied in various cellular and animal models to identify key genes involved in biological processes such as cancer and genetic diseases, which makes it possible to screen genes that affect cell senescence in the whole genome. Here, we describe a method that involves differentiating embryonic stem cells into mesenchymal progenitor cells and employing CRISPR/Cas9 for genome-wide functional screening to identify genes that regulate aging. Further analysis of the functions and regulatory mechanisms of these genes may provide new targets and strategies for anti-aging research and stem cell therapy.
Keywords: Aging; CRISPR/Cas9 screening; Embryonic stem cells; Mesenchymal progenitor cells.
© 2024. Springer Science+Business Media, LLC.