Impact of exercise and fasting on mitochondrial regulators in human muscle

Transl Exerc Biomed. 2024 Aug 19;1(3-4):183-194. doi: 10.1515/teb-2024-0014. eCollection 2024 Sep.

Abstract

Objectives: To investigate the impact of acute energetic stress (acute HIIE and fasting) on ERRγ, PPARβ, NR1D1, NR4A1, and TFEB in human skeletal muscle.

Methods: The current study performed secondary analyses using muscle biopsy samples from two previously published studies: study 1) leg muscle biopsies from nine men and eight women were obtained pre and 3 h following acute high-intensity interval cycling exercise (HIIE); study 2) leg muscle biopsies were obtained from nine men pre-, during, and post-an 8 h fast with or without 2 h of arm ergometer exercise. RT-PCR was performed on samples from each study to determine the mRNA expression of ERRγ, PPARβ, NR1D1, NR4A1, and TFEB. Additionally, we retrieved data from meta-analyzed human muscle gene expression using the publicly available database MetaMex.

Results: PGC-1α (p<0.01, d=1.98) and NR4A1 (p<0.01, d=1.36) mRNA expression significantly increased while TFEB (p≤0.05, d=0.70) decreased following HIIE. Significant decreases in NR4A1 and NR1D1 mRNA expression were observed following an 8 h fast. Our MetaMex analyses revealed significant increases (p<0.05) in PGC-1α and NR4A1 expression following aerobic and resistance exercise, and in PPARβ expression following resistance exercise.

Conclusions: Our data indicate that acute HIIE stimulates increases in NR4A1 and PGC-1α and decreases in TFEB mRNA expression in human skeletal muscle. Additionally, a short term (8 h) fast reduced the mRNA expression of the transcriptional regulators NR4A1 and NR1D1 - potentially as a mechanism of decreasing mitochondrial biogenesis to reduce energy expenditure during a period of restricted energy availability.

Keywords: aerobic exercise; caloric restriction; food deprivation; muscle remodeling; transcriptional regulators.