The long-term success of dental implants depends on the ability of soft tissues to form a protective barrier, limiting pathogen infiltration into peri-implant tissues. Here, we investigated the impact of an anodized surface modification on mucosal integration. Scanning electron microscopy and surface chemistry characterization were carried out on miniaturized implants. Following placement in fresh extraction sockets of mice, peri-implant tissues were examined at 4 time points. Histology along with quantitative immunohistochemistry for Keratin14, Vimentin, Laminin5, and CD68 were carried out on postimplant day (PID) 3 to assess early events in soft-tissue repair; on PID7, when peri-implant epithelialization was complete; at PID14, when osseointegration was complete; and at PID28, when soft-tissue maturation was nearing completion. In all cases, an intact junctional epithelium served as a reference. These analyses supported 3 conclusions: first, maturation of the peri-implant epithelium (PIE) is a protracted process, consistent with clinical observations. Second, maturation of the soft tissue-implant interface is slower than maturation of the bone-implant interface. Third, there is a benefit, albeit transient, to soft-tissue maturation around an anodized implant surface. Given its prolonged time course, strategies to improve and/or accelerate PIE maturation are likely to have significant clinical benefit.
Keywords: biomaterial; cell biology; dental implant; molecular biology; surface chemistry/properties; wound healing.