This research delves into the holistic hydrothermal synthesis of VS2 QDs and their subsequent utilization as a fluorescent probe for the subtle detection of ferric ions (Fe3+) in practical sample matrices. The detection paradigms harness a colorimetric sensing mechanism, amplified by smartphone-enabled analytical integration for improved precision and real-time monitoring. A comprehensive suite of analytical characterization techniques has been employed, revealing that the as-synthesized VS2 QDs feature a surface densely populated with functional groups. While the VS2 QDs showcase interactions with multifarious metal ions in aqueous media, they set forth a pronounced and selective fluorescent quenching response toward Fe3+ ions, markedly surpassing their interactions with other metal ions. The developed sensing probe exhibits a linear detection range spanning from 0 - 90 μM, with a LOD as low as 2.25 μM, also exhibits exceptional sensitivity (KD ∼ 0.8 × 104 M-1) and remarkable selectivity for Fe3+ ions, harnessing the intrinsic photoluminescent characteristics of VS2 QDs. In addition, a sophisticated portable smartphone platform, integrated with a radiometric fluorescence probe specifically tailored for in-situ detection of Fe3+ at the point of care, exhibits a LOD of approximately 5.05 μM, a value that resides below the prescribed safety threshold. Thus, the proposed probe stands to function as an exceptionally potent sensing apparatus for the precise quantification of Fe3+ in complex real-world samples.
Keywords: Colorimetric sensing; Ferric ions; Fluorescence quenching; Heavy Metal ions; Vanadium disulfide quantum dots.
Copyright © 2024 Elsevier B.V. All rights reserved.