Mechanistic target of rapamycin (mTOR) binds the small metabolite inositol hexakisphosphate (IP6) as shown in structures of mTOR; however, it remains unclear if IP6, or any other inositol phosphate species, function as an integral structural element(s) or catalytic regulator(s) of mTOR. Here, we show that multiple, exogenously added inositol phosphate species can enhance the ability of mTOR and mechanistic target of rapmycin complex 1 (mTORC1) to phosphorylate itself and peptide substrates in in vitro kinase reactions, with the higher order phosphorylated species being more potent (IP6 = IP5 > IP4 >> IP3). IP6 increased the VMAX and decreased the apparent KM of mTOR for ATP. Although IP6 did not affect the apparent KM of mTORC1 for ATP, monitoring kinase activity over longer reaction times showed increased product formation, suggesting inositol phosphates stabilize the active form of mTORC1 in vitro. The effects of IP6 on mTOR were reversible, suggesting IP6 bound to mTOR can be exchanged dynamically with the free solvent. Interestingly, we also observed that IP6 could alter mTOR electrophoretic mobility under denaturing conditions and its solubility in the presence of manganese. Together, these data suggest for the first time that multiple inositol phosphate species (IP6, IP5, IP4, and to a lesser extent IP3) can dynamically regulate mTOR and mTORC1 by promoting a stable, more soluble active state of the kinase. Our data suggest that studies of the dynamics of inositol phosphate regulation of mTOR in cells are well justified.
Keywords: enzyme kinetics; inositol hexakisphosphate; inositol phosphates; kinase; kinetics; mTOR; mTOR complex; signaling.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.