The present study was performed to synthesize eco-friendly nickel oxide nanoparticles (NiONPs) from the aqueous extract of Fissidens species (FS) and explore its biological activities. Phytochemicals, namely, alkaloids, flavonoids, sterols, tannins, proteins, carbohydrates and phenols, were present in the aqueous extract of Fissidens sp. The UV-Vis and FT-IR analyses of FS-NiONPs revealed a prominent peak at 392 nm, along with functional groups that facilitate the formation of FS-NiONPs. XRD spectrum confirmed the crystalline nature and SEM with EDX depicted the irregular, aggregated clusters and purity of FS-NiONPs. The photocatalytic activity against RB94 was achieved within 20 min with maximum decolorization efficiency (93%). The experimental data of adsorption studies fitted well with Langmuir isotherm, showcasing the monolayer adsorption of RB94 through chemisorption process. The thermodynamic study revealed that the dye removal was spontaneous, feasible and endothermic in nature. The results of antimicrobial activity and phytotoxicity study revealed the potentiality of FS-NiONPs in clinical and agricultural applications. Hence, this study emphasizes the eco-friendly synthesis of FS-NiONPs and highlights its decolorization potential, antimicrobial activity and growth promoting properties.
Keywords: Fissidens species; NiONPs; antimicrobial; photocatalytic; phytotoxicity.
© 2024 John Wiley & Sons Ltd.