Fish visceral waste, which is normally discarded, is considered one of the richest sources of proteinases with potential biotechnological applications. For this reason, alkaline proteinases from viscera of Argentine hake Merluccius hubbsi, Brazilian flathead Percophis brasiliensis, Brazilian codling Urophycis brasiliensis, and stripped weakfish Cynoscion guatucupa were characterized. Individuals were caught by a commercial fleet off the coast of the Argentinean Sea. The intestine and pyloric caeca were dissected out and then minced and triturated with distilled water. The proteinase activity of P. brasiliensis extracts was enhanced by all the ions tested (Mn2+, K+, Na+, Ca+2) while the enzymes of the other species were stable in the presence of those ions, retaining more than 60% of their enzymatic activity. Alkaline proteinases of all species showed extreme stability to 5% v/v surfactants at 60 min (Sodium dodecyl sulfate, Triton X-100, Tween 20, Tween 80), and relative stability toward an 6% v/v oxidizing agent (H2O2) and organic solvents 80% (acetone, isopropanol, methanol, ethanol). The enzyme extracts were incubated for 60 min with these compounds. Interestingly, alkaline proteinases from all species were compatible with the commercial detergents (Ala, Skip, and Ace). These results demonstrate that proteinases recovered from a no-cost sample such as fishery residues can be used for industrial applications, such as detergent formulations.
Keywords: alkaline proteinases; biochemical characterization; biotechnological applications; fish visceral wastes; southwest Atlantic Ocean.
© 2024 Fisheries Society of the British Isles.