Brain-computer interface (BCI) based on the motor imagery paradigm typically utilizes multi-channel electroencephalogram (EEG) to ensure accurate capture of physiological phenomena. However, excessive channels often contain redundant information and noise, which can significantly degrade BCI performance. Although there have been numerous studies on EEG channel selection, most of them require manual feature extraction, and the extracted features are difficult to fully represent the effective information of EEG signals. In this paper, we propose a spatio-temporal-graph attention network for channel selection (STGAT-CS) of EEG signals. We consider the EEG channels and their inter-channel connectivity as a graph and treat the channel selection problem as a node classification problem on the graph. We leverage the multi-head attention mechanism of graph attention network to dynamically capture topological relationships between nodes and update node features accordingly. Additionally, we introduce one-dimensional convolution to automatically extract temporal features from each channel in the original EEG signal, thereby obtaining more comprehensive spatiotemporal characteristics. In the classification tasks of the BCI Competition III Dataset IVa and BCI Competition IV Dataset I, STGAT-CS achieved average accuracies of 91.5% and 85.4% respectively, demonstrating the effectiveness of the proposed method.
Keywords: Brain-computer interface (BCI); Channel selection; Graph attention network (GAT); Motor imagery (MI); One-dimensional convolution (1D Conv).
© The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.