Layered deposits are found on the plateaus surrounding the western portion of Valles Marineris, mantling the chasmata rims. These rim deposits exhibit intricate layering and are described as light-toned layered deposits (LLDs) in previous studies. Light-toned layered deposits are thought to be composed of pyroclastic ash that was emplaced during volcanic eruptions and later chemically altered. Using Shallow Radar (SHARAD) observations to map radar reflections from what appears to be the base of these deposits, we discovered two additional types of rim deposits that are contiguous with the well-known LLDs; weakly layered deposits (WLDs) that exhibit less obvious stratification and completely unstratified deposits designated as nonlayered deposits (NDs). Complementing the SHARAD data with imagery from Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) and with narrow-angle imagery from the Mars Global Surveyor Mars Observer Camera (MOC-NA), we mapped the full extent of all rim deposits and present the finished map within this study. We hypothesize that all three deposits originate from pyroclastic ashfall but experienced different degrees of modification due to the variable presence of liquid water. This hypothesis requires a source of volcanic depositional material and past aqueous environments in regions with LLDs and WLDs. We discuss the potential for several large Tharsis volcanoes and a hypothesized degraded volcano within Noctis Labyrinthus as sources of the ash, and we examine the evidence for past aqueous environments.
Keywords: SHARAD; Valles Marineris; layered deposits; noctis; radar; volcano.
© 2024 The Author(s).