Spermidine/spermine N-acetyltransferases (SSATs) and other types of polyamine acetyltransferases (PAATs) acetylate diamines and/or polyamines. These enzymes are evolutionarily related and belong to the Gcn5-related N-acetyltransferase (GNAT) superfamily, yet we lack a fundamental understanding of their substrate specificity and/or promiscuity toward different compounds. Many of these enzymes are known or are predicted to acetylate polyamines, but in the cell there are other types of compounds that contain moieties derived from polyamines that may be the native substrates for these enzymes. To learn more about the identity of substrates that are acetylated, we selected and screened 17 different GNAT enzymes for activity toward a set of structurally diverse compounds that contained different types of amine moieties (e.g., aminopropyl, aminobutyl, etc.). These compounds included diamines, triamines, and polyamines containing primary amino groups, and they had structural diversity with variation of the chain length and presence or absence of internal amino groups and other functional groups. We found 12 of the 17 enzymes acetylated at least one of the compounds. Some enzymes were selective toward acetylating only one compound while others exhibited substrate promiscuity toward numerous compounds. Our experimental results ultimately allowed us to pinpoint specific substrates that could be further investigated to more fully understand substrate specificity versus promiscuity of GNAT enzymes and the role of acetylated small molecules in cells.
© 2024 The Authors. Published by American Chemical Society.