Multimodality model investigating the impact of brain atlases, connectivity measures, and dimensionality reduction techniques on Attention Deficit Hyperactivity Disorder diagnosis using resting state functional connectivity

J Med Imaging (Bellingham). 2024 Nov;11(6):064502. doi: 10.1117/1.JMI.11.6.064502. Epub 2024 Dec 20.

Abstract

Purpose: Various brain atlases are available to parcellate and analyze brain connections. Most traditional machine learning and deep learning studies analyzing Attention Deficit Hyperactivity Disorder (ADHD) have used either one or two brain atlases for their analysis. However, there is a lack of comprehensive research evaluating the impact of different brain atlases and associated factors such as connectivity measures and dimension reduction techniques on ADHD diagnosis.

Approach: This paper proposes an efficient and robust multimodality model that investigates various brain atlases utilizing different parcellation strategies and scales. Thirty combinations of six brain atlases and five distinct machine learning classifiers with optimized hyperparameters are implemented to identify the most promising brain atlas for ADHD diagnosis. These outcomes are validated using the statistical Friedman test. To enhance comprehensiveness, the impact of three different connectivity measures, each representing unique facets of brain connectivity, is also analyzed. Considering the extensive complexity of brain interconnections, the effect of various dimension reduction techniques on classification performance and execution time is also analyzed. The final model is integrated with phenotypic data to create an efficient multimodal ADHD classification model.

Results: Experimental results on the ADHD-200 dataset demonstrate a significant variation in classification performance introduced by each factor. The proposed model outperforms many state-of-the-art ADHD approaches and achieves an accuracy of 77.59%, an area under the curve (AUC) score of 77.25% and an F 1 -score of 75.43%.

Conclusions: The proposed model offers clear guidance for researchers, helping to standardize atlas selection and associated factors and improve the consistency and accuracy of ADHD studies for more reliable clinical applications.

Keywords: attention deficit hyperactivity disorder; brain atlas; connectivity measure; dimension reduction; functional magnetic resonance imaging; machine learning; multimodality.