Interactions between RNAs and proteins play a crucial role in various diseases, including viral infections and cancer. Hence, understanding and inhibiting these interactions are important for the development of novel therapeutics. However, the identification of drugs targeting RNA-protein interactions with high specificity and affinity is challenged by our limited molecular understanding of these interactions. Recent focus on structural and biochemical characterization, coupled with high-throughput screening technologies and computational modeling, have accelerated the identification of new RBPs and optimization of potential inhibitors. This review discusses key examples of inhibitors developed over the past decade that effectively disrupt pathogenic RNA-protein interactions. We focus on small molecule and peptide-based inhibitors that have shown promise in disrupting crucial RNA-protein interactions in eukaryotes, prokaryotes, and viruses. We also present the challenges and future directions in this field, emphasizing the need to achieve improved specificity and reduce the off-target effects of the inhibitors. This review aims to contribute to ongoing efforts towards the development of novel therapeutic agents targeting RNA-protein interactions by providing an in-depth analysis of significant developments and emerging trends in this rapidly growing field.
Keywords: Cancer; RNA binding proteins; antibiotic; small molecule therapeutics; virus.
© 2024 Wiley‐VCH GmbH.