Recent advances in dual catalysis involving biomimetic conversion strategies that utilize radical ligand transfer (RLT) often rely on large doses of precious metal additives. The role of these additives within the mechanism remains ambiguous, leading to complex reaction conditions, uncertain pathways, and increased costs. These challenges complicate the study of the reaction process and are accompanied by potential safety risks. To address these issues, azide salt was used as an alternative to TMSN3. This replacement not only avoids the drawbacks associated with almost parallel research on alkene azidodifluoroalkylation but also eliminates the need for ligands. Comparative analysis indicates that existing biomimetic synergistic catalysis strategies require Ag2CO3 additives to enhance selectivity in alkene difunctionalization reactions, highlighting the superior simplicity, environmental friendliness, and operational ease of our developed synergistic catalysis strategy. Furthermore, under the guidance of our proposed mechanism, an alkene azidosulfonation was designed, validating the innovative and practical applicability of our synergistic catalysis approach.