Food safety is a pressing global public issue that has garnered significant attention worldwide, especially recent outbreaks of foodborne illnesses. The use of emerging porous materials enables the development of effective and durable detection methods for the detection of food contaminants. Covalent organic frameworks (COFs), as a class of emerging porous crystalline materials, rendered with the advantage of large specific surface area, highly controllable and ordered structures, diverse pore structures, high stability, and controllable surface functionalization. Especially in the development of sensors, COFs exhibit versatile roles as signal amplifiers, molecular recognizers, molecular transfer mediators, carriers, catalysts, and reporters, making them highly valuable in various applications. In the context of food safety, COFs-based sensing platforms have shown great potential. This review aims to provide an in-depth understanding of COFs-based sensors by discussing recent advancements in this field. It begins with a systemic introduction of the synthetic strategies of COFs and the pros and cons, followed by the distinctive characteristics of COFs and their diverse functional roles in sensing strategies, emphasizing their importance in analysing food safety risks. Then the review further presented a comprehensive summary of the applications of COFs in sensing, specifically highlighting significant breakthroughs in the detection of various food contaminants like foodborne pathogens, mycotoxins, pesticides, antibiotics, heavy metals, etc. Additionally, the review addressed the challenges and opportunities associated with COFs-based sensors in the detection of food safety issues. The aim of the review was to contribute to the ongoing development and advancement of COFs for ensuring food safety.
Keywords: Challenges and perspectives; Characteristics and functional roles; Covalent organic frameworks (COFs); Food safety; Sensors; Synthetic strategies.
Copyright © 2024. Published by Elsevier Ltd.