Ribosome-associated quality control (RQC), a ubiquitous process essential for maintaining protein homeostasis in eukaryotes, acts as a critical surveillance system for protein translation. By identifying and eliminating stalled ribosomes, RQC prevents aberrant translation and the production of potentially toxic misfolded proteins. The review focuses on the role of RQC in mammals, where its complete functionality remains to be elucidated. This study delves into the mechanisms through which dysfunction in RQC plays a role in the development of neurological disorders, focusing on neurodegenerative and neurodevelopmental diseases. We explore the underlying mechanisms by which RQC dysfunction contributes to the pathogenesis of neurological disorders, particularly neurodegenerative and neurodevelopmental diseases. Further research is crucial to unravel the intricate mechanisms governing RQC's influence on neurological function. This knowledge will pave the way for exploring therapeutic avenues targeting RQC factors as potential interventions for these debilitating diseases. By shedding light on RQC's contribution to neurological disorders, this review opens doors for developing targeted therapies and interventions.
Keywords: Alzheimer’s disease; Ribosome-associated Quality Control; cognitive; neurodegenerative disorders; neurodevelopmental disorders; protein misfolding.
© The Author(s) 2024. Published by Oxford University Press on behalf of the Gerontological Society of America. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].