This study explores a quick, low-cost method to detect Alzheimer's disease (AD) by evaluating the accomplishment of a Gate-Stack (GS) Field Effect Transistor (FET). We investigate Single-Metal (SM), Dual-Metal (DM), and Tri-Metal Double Gate (DG) configurations, where cavities have been created by etching the oxide layer underneath the gate to immobilize grey matter samples collected through Solid-phase microextraction (SPME). Healthy and AD-affected grey matter have different dielectric characteristics at high frequencies. The dielectric constant of the etched nanocavities changes when the sample, which was formerly filled with air, is immobilized in the nanocavities. The alteration in the device drain current as well as performance at 2.4 GHz has been connected to the specimen's modified dielectric constant. To distinguish between the grey matter samples from AD patients and healthy individuals, the ION/IOFF of the suggested device along with the variation in device drain current, has been utilized as the foundation for the identification. The SM configuration has been examined by varying the cavity orientation and gate oxide stacking. To monitor the functioning of the suggested devices, the gate metal of the DM and TM devices has been altered, and a comparison has been made between SM, DM, and TM structures. The other recorded work from literature has been compared with the suggested detection technique. To ascertain whether the sample is impacted by AD, the proposed method can be used as a point of care (POC) diagnosis.
Keywords: Detection of Alzheimer's disease; Dual metal gate; FET-Based biosensor; Sensitivity; Tri-metal gate.
Copyright © 2024. Published by Elsevier B.V.