Functional genomics of primary congenital glaucoma by pathway analysis and functional characterization of CYP1B1 mutations

Vision Res. 2024 Dec 24:227:108534. doi: 10.1016/j.visres.2024.108534. Online ahead of print.

Abstract

CYP1B1 is the most common gene implicated in primary congenital glaucoma (PCG) - the most common form of childhood glaucoma. How CYP1B1 mutations cause PCG is not known. Understanding the mechanism of PCG caused by CYP1B1 mutations is crucial for disease management, therapeutics development, and potential prevention. We performed a comprehensive metabolome/reactome analysis of CYP1B1 to enlist CYP1B1-mediated processes in eye development. The identified metabolic events were classified into major pathways. Functional analysis of these metabolic pathways was performed after cloning the CYP1B1 wild-type gene and expressing the wild-type and selected novel mutants (previously reported by our group L24R, F190L, H279D, and G329D) in heterologous hosts. Stability and enzymatic functions were investigated. Structural modeling of the wild-type and the variants was also performed. Reactome analysis revealed a total of 166 metabolic processes which could be classified into four major pathways including estradiol metabolism, retinoic acid metabolism, arachidonic acid metabolism, and melatonin metabolism. Stability assay revealed rapid denaturing of mutant proteins compared to wild-type. Enzymatic assays showed functional deficit in mutant proteins in metabolizing estradiol, retinoids, arachidonate, and melatonin. Modeling revealed that the examined mutations induced structural changes likely causative in functional loss in CYB1B1 as observed in enzymatic assays. Hence, mutations in the CYP1B1 gene are associated with a functional deficit in critical pathways of eye development. These findings implicate the potential contributions of altered metabolic regulations of estradiol, retinoids, arachidonate and melatonin to the pathogenesis of PCG during the processes of the formation of ocular structures and function.

Keywords: CYP1B1; Functional genomics; Glaucoma; Ocular development; Pathogenesis; Pathway analysis; Primary congenital glaucoma; Reactome.