Thrombospondin-1 Small Interfering RNA-Loaded Lipid Nanoparticles Inhibiting Intimal Hyperplasia of Electrospun Polycaprolactone Vascular Grafts

ACS Nano. 2024 Dec 26. doi: 10.1021/acsnano.4c09419. Online ahead of print.

Abstract

Synthetic vascular grafts are promising conduits for small caliber arteries. However, due to restenosis caused by intimal hyperplasia, they cannot keep long patency in vivo. In this work, through single cell RNA sequencing, we found that thrombospondin-1 (THBS1) was highly expressed in the regenerated smooth muscle cells (SMCs) in electrospun polycaprolactone (PCL) vascular grafts. The expression of THBS1 by injured SMCs was confirmed in a balloon-induced vascular injury model. Downregulation of Thbs1 expression maintained contractile phenotypes of SMCs and reduced neointimal hyperplasia after vascular injury via inhibition of FGFR1/EGR1 signaling by decreasing THBS1 expression. THBS1 small interfering RNA (THBS1-siRNA) was then loaded into macrophage membrane (MM) hybrid lipid nanoparticles (Lipid NP@MM), which were used to modify PCL vascular grafts via polydopamine (PDA) coatings. Lipid NP@MM not only protected THBS1-siRNA from degradation but also improved its internalization by SMCs to decrease the level of THBS1 expression. PCL vascular grafts modified with PDA coatings and Thbs1-siRNA-loaded Lipid NP@MM showed significantly reduced intimal hyperplasia. Thus, the downregulation of THBS1 expression in regenerated SMCs in vascular grafts is a promising strategy to inhibit intimal hyperplasia during vascular graft regeneration in vivo.

Keywords: PCL vascular grafts; intimal hyperplasia; lipid nanoparticles; macrophage membrane; small interfering RNA.