The origin of life has long been a central scientific challenge, with various hypotheses proposed. The chemical evolution, which supposes that inorganic molecules can transform into organic molecules and subsequent primitive cells, laid the foundation for modern theories. Inorganic minerals are believed to play crucial catalytic roles in the process. However, the harsh reaction conditions of inorganic minerals hinder the accumulation of organic molecules, preventing the efficient transition from inorganic molecules to biomacromolecules. Given the inherent physicochemical properties and enzyme-like activities, this study proposes that nanozymes, nanomaterials with enzyme-like activities, act as efficient prebiotic catalysts in the origin of life. This hypothesis is based on the following: First, unlike traditional minerals, nanominerals can catalyze organic synthesis under milder conditions. Second, nanominerals can not only protect biomolecules from radiation damage but also catalyze polymerization reactions to form functional biomacromolecules and further lipid vesicles. More importantly, nanominerals are abundant in terrestrial and extraterrestrial environments. This perspective will systematically discuss the potential roles of nanozymes in the emergence of life based on the functions of minerals and the characteristics of nanozymes. We hope the research on nanozymes and the origin of life will bridge the gap between inorganic precursors and biomolecules under primitive environments.
Keywords: chemical evolution; inorganic minerals; nanozymes; origin of life.
© 2024 Wiley‐VCH GmbH.