Experimental models for exploring abnormal brain blood vessels, including ischemic stroke, are crucial in neuroscience; recently, significant attention has been paid to artificial tissues through tissue engineering. Nanofibers, although commonly used as tissue engineering scaffolds, undergo structural deformations easily, making it challenging to create uniform tissue, especially for the smallest-diameter ones such as perforating arteries. This study focused on the development of a platform capable of reconstructing structurally and functionally replicated perforating arteries. To ensure structural consistency, 3D-printed modules were developed to minimize the structural deformation of nanofibrous scaffolds when integrated into a 3D-printed vessel culture dish. Surface structures and physical characteristics of the nanofibers before and after installation were compared using scanning electron microscopy, contact angle analysis, surface area analysis, and universal testing machine (UTM) analysis. The results showed a uniform thickness distribution, topography, maximum load, tensile strain, tensile strength, surface area, pore size, and pore volume of the nanofibers. For consistency in tissue culture, smooth muscle, endothelial, and astrocyte cells were co-cultured by continuously measuring the pH of the medium and replenishing the depleted glucose using the Kalman filter control system. The functional efficacy and consistency of the artificial perforating vessels were confirmed under oxidative stress induced by exposure to hydrogen peroxide. Transcriptional mRNA expression trends were similar to those in vivo for antioxidant enzymes, neurotrophic factors, inflammatory factors, and endothelial cell activation factors, with very low variation between tissues. This study provides a research platform for studying the oxidative stress environments related to stroke by mass-producing perforating arteries with consistent structures and functions.
Keywords: Nanofiber scaffold; Oxidative stress; Perforating artery; Structure consistency; Tissue culture.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.