Ischemic stroke, accounting for approximately 80% of all stroke cases, remains a leading cause of death and disability worldwide. Effective management of ischemic stroke is heavily influenced by its etiology, which can range from large-artery atherosclerosis and cardiac embolism to cerebral small-vessel occlusions and cryptogenic strokes. Cardioembolic stroke, which makes up about 30% of ischemic strokes, often leads to more severe symptoms and worse outcomes, necessitating anticoagulation therapy for prevention. Cryptogenic strokes, comprising over 25% of ischemic strokes, pose significant challenges for treatment and prevention due to their elusive nature. Thorough investigation of cardioembolic sources during the acute phase of stroke is crucial. While transthoracic and transesophageal echocardiography are traditional methods for detecting intracardiac thrombi and patent foramen ovale (PFO), cardiac CT has emerged as a non-invasive, efficient alternative. Cardiac CT can effectively visualize intracardiac thrombi, PFO, valvular abnormalities, tumors, and complex aortic plaques. This review discusses the potential applications of cardiac CT in ischemic stroke, emphasizing its role in identifying stroke etiology, predicting stroke risk, and assessing patient prognosis. The integration of advanced imaging technologies and artificial intelligence further enhances its diagnostic accuracy and clinical utility, promising to improve outcomes and reduce the healthcare burden associated with ischemic stroke.
Keywords: Cardiac CT; Cardioembolic sources; Etiology; Ischemic stroke; Risk prediction.
© 2024. The Author(s) under exclusive licence to Belgian Neurological Society.