β-Caryophyllene (BCP) is a naturally occurring sesquiterpene found in numerous plant species, including Cannabis sativa. BCP has shown a high safety profile and a wide range of biological functions, including beneficial effects in neurodegenerative and inflammatory diseases. Here, we used behavioral, pharmacological, and in-silico docking analyses to investigate the effects and mechanism of action of BCP in Fragile X Syndrome (FXS), the most common inherited cause of Autism Spectrum Disorder (ASD) and intellectual disability. To this aim, we used the recently validated Fmr1-Δexon 8 rat model of FXS, that is also a genetic rat model of ASD. Acute and repeated oral administration of BCP rescued the cognitive deficits displayed by Fmr1-Δexon 8 rats, without inducing tolerance after repeated administration. These beneficial effects were mediated by activation of hippocampal peroxisome proliferator-activated receptors (PPARs) α and γ, and were mimicked by the PPARα agonist Fenofibrate and the PPARγ agonist Pioglitazone. Conversely, CB2 cannabinoid receptors were not involved. Docking analyses further confirmed the ability of BCP to bind rat PPARs. Together, our findings demonstrate that hippocampal PPARs α and γ play a role in the cognitive deficits observed in a rat model of FXS, and provide first preclinical evidence about the efficacy and mechanism of action of BCP in neurodevelopmental disorders.
Keywords: Cognitive performance; Fragile X syndrome; Peroxisome proliferator-activated receptors; Rat model; β-Caryophyllene.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.