Pea protein nano-micelles gained with partial hydrolysis by a proteolytic enzyme (Protamex) were employed as nanocarriers to encapsulate and stabilize liable and hydrophobic curcumin (CUR) with two various methods (pH-driven method (PDM) and ethanol-induced method (EIM)). Both CUR-loaded pea protein hydrolysates (PPHs) nano-micelles by PDM and EIM exhibited spherical shapes, and uniform particle size distributions. Highest CUR loading amount (3.21 %) was gained with PPHs by PDM. The interaction between PPHs nano-micelles and curcumin was comprehensively examined with optical spectroscopy. These outcomes obviously demonstrated the water solubility, storage stability against UV light and heating, bioaccessibility and in vitro antioxidant activity of CUR can be pronouncedly enhanced with PPHs-based nanocarriers. Interestingly, PPHs-CUR nano-micelles fabricated with PDM have higher loading amount, light stability, and better bioaccessibility as well as antioxidant activity than those by EIM. These results clearly show that PDM may be a better method than EIM and provide useful information in nutraceuticals encapsulation with vegetable proteins-based delivery systems.
Keywords: Curcumin; Encapsulation; Hydrolysis; Nano-micelles; Pea protein; pH-driven method.
Copyright © 2024 Elsevier B.V. All rights reserved.