Hydrogen inhalation exerts anti-seizure effects by preventing oxidative stress and inflammation in the hippocampus in a rat model of kainic acid-induced seizures

Neurochem Int. 2024 Dec 24:105925. doi: 10.1016/j.neuint.2024.105925. Online ahead of print.

Abstract

Hydrogen gas (H2) is an antioxidant with demonstrated neuroprotective efficacy. In this study, we administered H2 via inhalation to rats to evaluate its effects on seizures induced by kainic acid (KA) injection and the underlying mechanism. The animals were intraperitoneally injected with KA (15 mg/kg) to induce seizures. H2 was inhaled 2 h once a day for 5 days before KA administration. The seizure activity was evaluated using Racine's convulsion scale and electroencephalography (EEG). Neuronal cell loss, glial cell activation, and the levels of inflammatory cytokines (TNF-α, IL-1β, IL-6, CCL2, and CCL3), reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus were assessed. The cerebral blood flow of the rats was also evaluated. The results revealed that KA-treated rats presented increased seizure intensity; increased neuronal loss and astrocyte activation; increased levels of ROS, TNF-α, IL-1β, IL-6, CCL2, and CCL3; and reduced Nrf2 phosphorylation levels. Pretreatment with H2 inhalation significantly attenuated seizure intensity; prevented neuronal loss; decreased microglial and astrocytic activation; decreased ROS, TNF-α, IL-1β, IL-6, CCL2 and CCL3 levels; and increased Nrf2 levels. Inhalation of H2 also prevented the KA-induced decrease in cerebral blood flow. These results suggest that pretreatment with H2 inhalation ameliorates KA-induced seizures and inhibits the inflammatory response and oxidative stress, which protects neurons.

Keywords: H(2); anticonvulsant profile; hippocampus; inflammation; kainic acid; oxidative stress.